Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Previous statistical studies have described the distributions and properties of whistler‐mode waves in Jupiter's magnetosphere, but explaining these wave distributions requires modeling wave propagation from their generation near the magnetic equator. In this letter, we conduct ray tracing of whistler‐mode waves based on realistic Jovian magnetic field and density models. The ray tracing results generally agree with the statistical wave distributions based on Juno measurements. The modeled ray paths show that high‐frequency waves generated near the equator are confined within 20° magnetic latitude due to Landau damping, low‐frequency waves can propagate to higher latitudes and lowerM‐shells, with changing wave normal angles, and a portion of low‐frequency waves could propagate to highMshells at high latitudes. Our modeling results provide a theoretical interpretation of whistler‐mode wave distributions and properties, providing essential insights for future radiation belt models at Jupiter.more » « lessFree, publicly-accessible full text available March 16, 2026
-
Night-side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲ 100𝑘𝑒𝑉 electrons. However, recent low-altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night-side. This study presents a night-side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event-based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night-side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night-side relativistic electron precipitation.more » « less
-
Abstract The full spatiotemporal distribution of chorus wave‐induced relativistic electron microburst is modeled for chorus waves originated from different L shells and MLTs, based on the newly developed numerical precipitation model (Kang et al., 2022,https://doi.org/10.1029/2022gl100841). The wave‐particle interaction process that induces each microburst is analyzed in detail, and its relation to the chorus wave propagation effects is explained. The global distribution of maximum precipitation fluxes and scale sizes of relativistic microbursts is then obtained by modeling chorus waves at different L‐shells and local times. The characteristics of dawn and midnight sector microbursts have little difference, but the noon sector has much larger maximum flux and much smaller full width at half maximum, which may be due to dayside's low electron flux in the Landau resonance range. This suggests the controlling effect of keV electrons on the MeV electron precipitation intensity and properties and the overall relativistic electron loss in the outer radiation belt.more » « less
-
Abstract Relativistic microbursts are impulsive, sub‐second precipitation bursts of relativistic electrons. They are one of the main loss mechanisms of outer radiation belt electrons, and are driven by chorus waves. The scale size of relativistic microbursts is still not fully understood. In this work a global modeling of the microburst spatial distribution is conducted to study the scale size of relativistic microburst induced by chorus waves. A primary precipitation burst is induced near the source region by quasi‐parallel waves, and a secondary precipitation (SP) is induced on higher L‐shells by further‐propagating, oblique waves. The SP has a significant scale size even with a point‐source assumption because of wave spreading due to propagation effect. The secondary relativistic microburst scale size is ∼40(20) km on the counter (co)‐streaming side, consistent with previous observations. Our modeling results indicate chorus wave propagation effects are one of the primary factors controlling the relativistic microburst scale size.more » « less
-
There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis.more » « less
An official website of the United States government

Full Text Available